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AN ANALYTICAL AND EXPERIMENTAL APPROACH TO THE
PENETRATION OF SEMI-INFINITE TARGETS BY LONG RODS

N P. P. Gillis
University of Kentucky
Lexington, Kentucky

8. E. Jones
U.S. Air Force Academy
Colorado Springs, Colorado

L. L. Wiison and J. C. Foster, Jr.
Eglin Air Force Base, Florida

ABSTRACT

The one-dimensional analysis of long rod
penetration into semi-infinite targets as developed by
Tate has previously been modified by the present
suthors to include the effects of mass transfer into
the plastic zone and the mushroom strain at the
penetrator tip. This latter factor has a substantial
effect on calculated penetrations. This paper reviews
the modified theory, extends its application to several
cases not previously treated, and then details the
results of a series of experiments that tend to confirm
the validity of the modified mathematical model.

NOTATION

initial cross-sectional area of rod

(¥/0)*"*

engineering strain

internal force

initial length of rod

remaining undeformed length of rod

final remaining undeformed length of rod

i{nterface force

interface pressure

target strength

elapsed time since impact

speed of penetration into target
initial impact speed of rod
current speed of rod

length of rod that has been consumed
rod strength

penetration depth

final penetration depth

P\NN%‘1< <enrnvY 'ﬂ\““(“'ﬂﬂh >

increment
2?  ratio of target strength to that of rod
“z ratio of mass density of target to that
of rod
mass density of rod

RN

derivative with respect to time
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INTRODUCTION

A problem of obvious technological significance is
the penetration of armor by projectiles. This problen
has received considerable attention over the last few
decades. At one stage, the emphasis was on improved
design of body armor; at another, it was enhanced
penetrator design. During this same period the
development of very fast, high-capacity computers
enabled the penstration problem to be modeled with
great detail, provided that the target and projectile
materials were adequately described. However, the
corresponding descriptions of the penetration process
vere far more detailed than any experimental results
with which they might be compared.

From the experimental point of view, the mechanics
of penetration has been studied for many Yyears.
However, slow progress with analytical techniques has
caused most of the efforts to be supported by numerical

studies. Nevertheless, simple one-dimensional theories
have held the greatest attraction for wmost
experimentalists. Among such theories, that of Tate

[1,2] saems to have attracted the greatest following.

Whatever approach 1is adopted, and wvhatever
theories employed, the design engineer confronted with
high speed penetration faces & difficult problem.
Materials selection under very high rates of loading
has confronted and confounded designers for many
decades. A thorough understanding of all the relevant
material parameters and their effects on flow and
fracture would be required for the selection of
materials which are optimally suited for particular
high strain rate applications. However, since this
information is usually not available, other approaches
are required. This is the sotivation behind the use of
one-dimensional engineering models.- Even though such
an approach is generally not capable of providing
detailed information on specific aspects of the events,
it can provide valuable insights into the interactions
of the parameters in the probles.




Recently, the one-dimensional long rod penetration
theory of Tate [1,2]) was modified by the present
authors [3,4) so as to account for mass loss from the
undeforwed section through the rigid-plastic interface.
This modification makes the equation of motion exact
inatead of approximats. Mathematically, {t adds a
relative motion term to cthe existing equation of
motion. This presented a slight {increass (n
complexity, but introduced a more reslistic, non-zero
strain at the penetrator tip. Being able to take
account of .the tip strain of such a mushrooming

penetrator (s a substantial {mprovesent over the
original theory. Calculations based on this
modification yileld quite reascnable estimates of

penetration depths using realistic values of the target
and penstrator strengths. In the present paper, we
review some of the details of the extension of Tate's
theory.  Then, several cases are treated in which
solutions can be obtained in closed form. After that,
S0Be recent experimental resulcs are presentsd that
tend to confirm the validity of this modified theory.

THEORY

Cons{der the normal penetration of a semi-infinite
target by an axisymmetric, cylindrical rod of initial
length L. The rod material can be separated into rigid
and plastic regions during the penetration process
(Fig. 1). The plastic region is wafer thin and
instantaneously sroding. However, the mean engine<~ing
strain {n the plastic region (mushroom) is non-zero.
This allows for the deformed and undeformed sections of
the rod to have different diameters.

Fig. 1 Schematic of rod. (a) Shows plastic
portion X, and undeformed portion
L-X=f. (b) Shows penetration into
target to a depth 2.

In {3], the authors axamined the bdalance of

ispulse and momentum across the deformed and undeformed
sections (Fig. 2). Application of this principle leads
to the equation of motion for the undeformed section.

& + 2 (vu) = ~p/p (1+e) (1)
In this equation, v is the velocity of the undeformed
section, u 4is the penetration velocity, ¢ is the
undaformed section length, p {s the constant penetrator
sass density, p s the interface pressure between the
penstrator tip sand the target, and e¢ {s the engineering
strain in che deformed section of the penetrator
adjacent to the rigid-plastic interfacs. Dots over
characters denotes time differentistion.
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Fig. 2 Schematic of the transfer of mass
elenent pAAX from the undeformed to
the plastic portion of red.
The velocities u and v are coupled by a

This relationship can be
derived by equating the distances in Figure 3. At time
t, the undeformed section has length ¢ and spesd v. At
a later time, t + At, the undeformed section has lost
an increment of length al to plastic deformation.
Since the engineering strain at this point is e, the
corresponding length of the newly deformed section
(mushroom) is Al(1 + e¢). The total distance ¢ + u At
must equal v At + (2 - a8) + AL (1 + e). Therefors,
u At = v At + @ M., Dividing by At and passing to the
limit as At 9 0, leads to

kinematical relationship.

2)

edav.-u

Notice that Fig. 3 requires -al/At to go to i, This

kinematical equation replaces the classical equation §
= =(v-u) used by Tate [1,2].
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Fig. 3 Schematic illustration of the rear
portion of the projectile. During
the time interval at, the front of
the indicated section is displaced a
distance uAt, while the rear {s
displaced a distance vat.

Tate [1,2) has advocated the use of a modified
Bernoulli equation to complete the system (ses, also
Tate [5]). This equation gives both an estimate of the
interface pressure p and a relationship between u and v

p-%u2'u2+l-%p'(v-u)2‘+Y (3)

vhere pzp denotes the target density and R and Y are
the dynamic strength factors of che target and
penetrator respsctively. In general, these factors are
quite different from the static yield strengths for.the
materials.




Bquations (1)-(3) form a system of three first
order ordinary differential equations in four
time-dependent unknowns: ¢, v, u, and e. The modified
Bernculli equation stems from pseudo-steady-state
considerations. It is appropriate, therefore, to take
e to be constant. The target craters are approximated
by cylindrical holes of depth z and cross-sectional
area A/(l1 + ¢), where A is the initial cross-sectionsl
area of the rod. For the purpose of comparing the
theory with ‘experiment, the values of e will be
computed from the "profile hole diameters” of the
targets. The "profile hole diameter™ is the minisum
dismeter of the penetration crater produced in the
target (see Fig. 4).

Fig. 4 Portion of a 7075-T6é aluminum target

after being impacted at 2.49 ka l-l

by a hard steel rod. The target has
been sectioned through the resulting
crater to show its shape.

By taking e as an experimentally determined
paramster, equations (1)-(3) represent a system of
three first order ordinary differentisl equations in
the time-dependent unknowms ¢, v, u. VUhen data for
material properties is supplied, these equations can be

integrated and the total penetration depth 2z ’ can be

computed from
z=-u ()

The initial conditions for the system are v(0) = V and
80) = L, where V is the impact velocity of the rod.
The initial penetration velocity u(0) can be found from
equation (3).

INTEGRATION OF THE DIFFERENTIAL EQUATIONS

For the most part, analytical solutfons to the
system (1)~(3) are not available. There are some
cases, however, where exact integrals are available.
They are: (a) when the rod disintegrates at the target
surface - no penetration; (b) when the rod penetrates
without deforming - rigid body penetration; and (c)
vhen the rod and target are of equal strengths. These
cases were originally treated by Tate [1,2] and later
by the present authors [3] for Tate's kinematical

relation ¢ « =(vu), but not for the more general

kinematical relation presented in this paper, I
(v-u)/e, equation (2). These important cases will be
treated in the order in which they were presented in
[3].

(a) No Penetration

No penetration is implied by u = 0. The pressure
at the rod/target interface can be formed froa (3).

2

p-%pv + Y 5

From (2), v = el and v = el which can be substituted
into (1) to obtain

e G0 s -0 (6)

This equation can be integrated once, subject to the

initial conditions £&(0) = L and £(0) = V/e. The result
is

2 243¢
+e
12 - v . Y (L) - Y n
.5 pel2+3e) T pelieie)

When the event is over v = 0, vhich means that
t-0,0«2, and

s
243e
T+e

(li,’ - 142 (5 ®

where 2 - Y/p and lf is the length of rod remaining

after it comes to rest. The rod is entirely consumed
when

2
243e |V
e &) - -1 9
The corresponding strain satisfies

2 2
[z+3(§)]e+z(§)-o (10)

The strain given by equation (10) is the minimum value
of e that can be sustained during this impact.

When e passes from compressive strains which are
less than 2/3 to compressive strains wvhich exceed 2/3
the exponent of the ratio L/¢ '’ changes sign. However,

equation (8) continues to be valid, although the
algebraic structure is different.

(b) Rigid Body Penetration

In this case, there is no rod deformation so that
uevanddt =0 The pressure at the rod/target

interface is found from (3).
P’%uzgu2+k an

Since ! = 0, ¢ = L throughout the svent and equation
(1) becomes




<o

. 2 R
uﬁmu +m-o (12)

Mov, using this result, we can compute the penetration
depth. From (4) £ = u vhich can be used to transform

U = u du/ds. Thus, (12) becomes

R (13)
.
ﬂ T+e) L(T+e)
vhich can be directly lntogratod to give
s-dfiam (16)
u ’ 'T

In this equation, we have assumed that 2 = 0 at impact
vhen u = V. The total penetration depth z ¢ occurs vhen

the penetration velocity u reaches zero.

2
:!-—:-;-;3!.&1[1+—'%:v—] (15)

This formula 1is similar to the classical De Marre
formula (see Reinhart and Pearson [6]) or the Petry
equation (see Backman (7])). It is also the same as
that previously presented by the authors {3].

(¢) Equal Strengths

As indicated earlier, the penetration-
with-comsumption case is not integrable, in general.
However, the case for equal target and penetrator
strengths, R = Y, {s an isolated example of rod
penetration, accompanied by deformation and erosion,
vhich is integrable.

The condition of equal strengths reduces (3) to

u - 1_1_“ v (16)
With this result, (2) becomes

ol - 1_+L" v (7

Using equations (16) and (17), we can substitute
into (1) to obtain a single equation for &.

tl+sablopao (1)
vhere
and

b= p: :o +») (20)

The integration of (18) now proceeds by
considering two separate cases.

In this case, a first integral of (18) is

2, (6] (21)
02105 ) [ (1’“) (!JQS] T

vhere the {initial condtions &(0) = L and {(0) =~
#V/(14u)e have been employed. At the end of the event,

l-omc-t,. vhere ¢, 1s the final unconsumed
rod length. Equation (21) becomes

2a
2R
[c(l*u) el ‘ N ](l) TR @

This equation can be used to find t, in terms of the
problea parameters. Whenever

2,2

v 2R
-Lz + >0 (23)
o(1+p) #(2+3e)

equation (22) can readily be solved for tf. For very

saall strains, this inequality will break down.
Fortunately, these strains are too small to be
realistic for most of the events that concern us. For
very large strains, say =1 < e < =2/3, the signs on key
teras in (22) change, including the sign of a. Thus, we
can agsin find l,. even though the inequality in (23)

is not satisfied.
The total penetration depth 2z 7 is of conaiderable

interest. This quantity can be found by noting that u
= ol/u and z = u by equation (4). Eliminating u and
integrating results in

-2 - 4
z, m (L ¢!) (24)
vhere t, is the solution of (22).

Case (i1) a = 0 or ¢ = =-2/3.

For the exceptional case, a first integral of (18)

2
2. _(r%_” :3 & ‘1) + -5——,2' (25)

e (1+p)

is

Vhen the event concludes, there will be a final
unconsumed rod length l,. This quantity is given by

vasl -
l, = Lexp{ 3ehY ) (26)

The depth of penetration can be developed by
observing that u = =21/3u. The result ia

s L=t @n

where t, {s taken from (26).

—_— ]




(8) Gensral Case

For the general case of penetration sccompanied by
rod deformation vhen the target and rod have unequal
strengths, mumerical integration i{s required, as noted
previously.
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Fig. 5 Non-dimensionalized penetration

depth versus non-dimensionsl impact
velocity for hard steel targets by
hard steel penstrators having
various length-to-diameter ratios.

EXPERIMENTAL RESULTS

Details of the penstration experiments have been
published elsevhere [4]. Briefly summarized they
involved targets and penetrators made from two steels
and two aluminums. Aspect ratios (length/diameter) of
the rods ranged from 2.5 to 10 and impact velocities
were approximately in the range 1-2.5 ku/s.

Figure 5 shows actual experimental results (open
sysbols) and calculated values (solid symbols) from
equations (22) and (24), for the penestration of hard
steel targets by hard steel rods. The dynamic strength

of the material is 1428 MPa, as estimated from Taylor
Tests on the actual specimen material. The values of ¢
have been estimated from post-test measursments on the
profile hole diameters of sectioned targets (see Fig.
4). The comparison with experiment is generally
favorable. As expected, better agreement is achieved
for the longer rods (higher aspect ratios).

Results obtained by numerical {integration of
esquations (1)-(4) are compared with actual experimental
Tegults in Figures 6-9. The targets are soft ateel
(1263 MPa), hard steel (1428 MPa), 2024 aluminum (395
MPa), and 7075 sluminum (562 MPa). Various penetrators
sre used. The penetrator strengths are indicated in
the figures. All of the rods have an aspect ratio of

The asgreement of theory with experiment is
generally good. It is especially so wvhen one considers
that the dynsaic strengths are estimated from sctusl
laboratory measursments and not taken as adjustable
parametexrs. The authors’ theory (8] was used to make
the dynamic strength estimstes.
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velocity for soft steel targets and
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hard scteel, sofc steel and 7075
aluminunm.
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CONCLUSION

The theory of the mushrooming penetrator is s
rather dramatic departure from the Tate Theory.
Typically, the penetration depths predicted by the Tate
Theory are about twice those predicted by the modiffed
theory for the same material constants. The difference
is primarily due to the lack of a mushroos on the tip
of the penetrator in the sarlier theory.

During the process of psnetration, the eroding rod
declerates as it goes into the target. It is quice
likely that the mushroom strain at the rod end varies
as the penetration velocity changes. This speculation
is sustained by many experimental observations of the
type shown by Fig. &4 in which the crater diameter
clearly varies from snd to end. On the other hand,
this strain is simply taken as a constant in the
present analysis, It s remarkable how such an
approach can yield such good agresment with the
experimental data.
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